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Abstract  

There is a point of view from which a field governed by the Dirac equation for the elec- 
tron is the same as a field governed by the MaxweU-Lorentz equations for electromagnetic 
fields. This observation suggests the possibility that the two sets of equations are of the 
same origin. 

1. Introduction 

The purpose of  this paper is to demonstrate  that it  is sensible to speculate 
that  the Dirac equation for the electron and the Maxwell-Lorentz equations 
for electromagnetic fields are derivable, in two different ways of  approximat ion 
respectively, from the same one set of  nonlinear equations covariant under the 
coordinate transformation of  a non.Euclidean sense. During the last fifty years, 
this kind of  speculation was prohibi ted  strictly by the conventional discipline 
of  quantum mechanics. The principle of  indeterminacy and that o f  superposition 
make the not ion of  spinor physically significant; conversely, the apparent  
necessity o f  the not ion  of  spinor, demonstra ted first by  Pauli, make those 
principles indispensable ones in physics. This is a situation which cannot be 
found in classical mechanics. Furthermore,  it  has been found that  the Maxwell- 
Lorentz equations ( footnote  1) can be rewrit ten in terms of  spinors; the 
resultant spinor equations differ considerably from the Dirac equation (Bade 

and Jehle, 1953). Thus one tends to believe that  the not ion of  spinor is funda- 
mental in physics, and there is no kinship between the Dirac equation and the 
Maxwell-Lorentz equations, except  that  they are both  spinor equations. In 
recent years, however, it has become evident that  most  of  those principles 
which characterize quantum mechanics as distinctive from classical mechanics, 

1 Throughout this paper, from here on, we call the Dirac equation for the electron simply, 
the Dirac equation, and the Maxwell-Lorentz equations for electromagnetic fields as 
the Maxwell-Lorentz equations. 
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including classical field theories, are of limited validity (Koga, 1972, 1973, 
1974). Furthermore, it seems to be difficult, from the physical point of view, 
to regard the Dirac equation as a spinor equation (Koga, 1975a, 1975b). 
Hence we now have no significant reason for which we refrain from reexamin- 
ing the possibility of interpreting the Dirac equation in the light of our under- 
standing of classical mechanics and classical field theories. 

First, in Section 2, we shall summarize difficulties found with respect to the 
Dirac equation, particularly from the relativistic point of view. In Section 3, 
we shall see certain similarity and complementarity existing qualitatively be- 
tween the Dirac equation and the Maxwell-Lorentz equations. Motivated by 
the result of this qualitative observation, we shall find, in Section 4, that if a 
field governed by the Dirac equation is seen as electromagnetic in an inertial 
frame of reference, the field has a magnetic moment which is the same as of 
the Bohr magneton. This implies that a field governed by the Dirac equation 
has a peculiarly ordered structure which can be introduced to a field satisfying 
the Maxwell-Lorentz equations either by a particular boundary condition or 
by a particular source, i.e., the Bohr magneton. In conclusion, we shall em- 
hasize that the physical kinship existing between the Dirac equation and the 
Maxwell-Lorentz equations seems to be different from those relations which 
have been found thus far in terms of the mathematical notion of spinor. 

2. Difficulties of  the Dirac Equation 

From the mathematical point of view, the Dirac equation may be a spinor 
equation and is covariant under the Lorentz transformations. From the physical 
point of view, however, the situation is not simple. 

In the first place, the quantum-mechanical notion of  the motion of a particle 
is not compatible with the notion of the special-relativistic covariancy of a 
physical law. This is due to the fact that the uncertainty principle prohibits 
the simultaneous determination of the velocity and the position of a particle, 
while that determination is necessary for the Lorentz transformation (Koga, 
1975b, Appendix A). 

If we, being required to do so from the physical point of view, rewrite the 
Dirac equation to a set of four partial differential equations by choosing a set 
of matrices for those pertinent symbols contained in the former, the resultant 
partial differential equations are not symmetric with respect to the spatial co- 
ordinates, because of the anisotropy of the spin-matrix components. We note 
that subscripts (1, 2, 3, 4) attached to the four wave functions are not spatial- 
directional indices. Hence, it is a sensible conclusion that the anisotropy of the 
spin structure of the electron is already embodied in the Dirac equation by 
means of the anisotropy of the spin-matrix components, of which the choice 
is not completely specified in the Dirac equation. Then, a rotation of the 
coordinate axes must be paired with a transformation of the spin matrices 
instead of the wave functions. In this way, the wave functions governed by 
the Dirac equation are to be regarded as scalars under rotatory transformations, 



RELATION BETWEEN ELECTRON AND ELECTROMAGNETIC FIELDS 379 

including the Lorentz transformation, of the coordinate axes. If we do so and 
regard the Dirac equation as a set of four partial differential equations, the 
equations are no longer covariant under those transformations of the coordin- 
ate axes (Koga, 1975b, Appendix B) (see footnote 2). 

It is difficult to evaluate physically a solution of the Dirac equation in the 
conventional way of quantum mechanics: As noted elsewhere (Koga, 1957a, 
Appendix), the principle of superposition is not valid for states satisfying the 
Dirac equation. As a consequence, there is no Heisenberg's equation of motion 
which can be derivable from the Dirac equation. Obviously the Dirac equation 
itself has no agency to motivate or govern a rotatory motion of the aniso- 
tropic composition of the spin matrices, and hence the anisotropic structure 
of the electron. We may say that the Dirac equation might not be complete 
for governing the behavior of the electron. The footnote given for the last 
paragraph is also pertinent for this paragraph. 

To sum up, the significance of the Dirac equation seems to lie beyond the 
conventional scope of quantum mechanics. 

3. Lorentz's Speculation 

As is well known, H. A. Lorentz, in the beginning of this century, assumed 
that all electromagnetic phenomena were ascribed to the agency of moving 
electric charges, i.e., electrons. Furthermore, he speculated that the mass, 
energy, and momentum of the electron could be of purely electromagnetic 
origin (Lorentz, 1952). Stimulated by this speculation, a number of authors 
attempted to clarify the structure of the electron as of electromagnetic nature. 
Those attempts, made prior to Heisenberg's discovery of quantum mechanics, 
were not completely successful, and the development of quantum-mechanical 
view of the electron in the 1920's seemed to have ted most physicists to 
abandon Lorentz's speculation of the electron structure as unfeasible (Mq~ller, 
1952; Sommerfeld, 1964). Indeed, it is difficult to adjust the conventional 
quantum-mechanical view of the electron, formed as in accordance with the 
principle of indeterminacy and that of superposition, to the concerned 
speculation of Lorentz which is entirely classical-mechanical. Rather, Farady- 
Maxwell-Lorentz's view of electromagnetic fields has been replaced with the 
concept of the photon. Any field, once being quantized, loses its connection 
to space coordinates. Besides, it has become known that the electromagnetic 
field tensor, a second-rank antisymmetric tensor, can be constructed in terms 

2 It might be overly spontaneous to recall here that Euler's equations of rotatory motion 
of a rigid body, where the principal axes of inertia at the center of mass are taken as 
forming the coordinate axes and the moment of inertia is not isotropic, are not form- 
invariant under a rotatory transformation of the coordinate axes. Nevertheless, one 
might tend to note that the arbitrariness in choosing the spin matrices in the Dirac 
equation is analogous to the arbitrariness in choosing the three moments of inertia 
about the coordinate axes in Euler's equations considered above. But it is likely that 
the analogy is merely incidental, 
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of spinors of which the interpretation is made only in quantum mechanics 
(Bade and Jehle, 1953) (see footnote 3). 

Uncovered in recent years, however, are evidences which lead us to believe 
that the trend of our understanding of quantum mechanics must change: In 
the first place, as noted in Section 2, the principle of indeterminacy and that 
of superposition seem to be merely of  conventional validity, and so does the 
theory of measurement. Secondly, the concept of the photon is considered to 
be not only irrational in principle (Koga, 1973), but also unnecessary in many 
practical cases (ScuUy and Sargent, 1972). Furthermore, as stated in Section 2, 
wave functions satisfying the Dirac equation are scalars from the physical point 
of view, although the concept of spinor may exist as of  mathematics. 

Under the circumstances, one may once more be interested in Lorentz's 
speculation aforementioned. Instead of  following Lorentz literally, however, 
it may be more reasonable to speculate that an electron is a localized and self- 
sustained field which may be governed by a set of nonlinear partial differential 
equations covariant under the coordinate transformation made in a non- 
Euclidean sense (Einstein, 1954) (see footnote 4). 

According to the above speculation, the Dirac equation and the Maxwell- 
Lorentz equations are to be obtained by linearizing the original set of non- 
linear partial differential equations in two different ways of approximation 
respectively. Indeed, we see that the Dirac equation and the Maxwell-Lorentz 
equations are mutually complementary for  the electron: The behavior of a 
bare or mechanical electron is supposed to be governed by the Dirac equation 
under the influence of an electromagnetic field of which the source is the 
bare electron itself and which is supposed to be governed by the Maxwell- 
Lorentz equations. Thus the really observable electron consists of two parts, 
the bare core and the electromagnetic part (Heitler, 1954, chapter VI). Since 
the two parts constitute the really observable electron, the behavior of the 
real electron is in fact governed by the Dirac equation and the Maxwetl-Lorentz 
equations considered simultaneously. But they are inseparable by any experi- 
mental method. Hence, it must be merely a matter of tentative convenience 
to treat an electron as if separable into two distinctive parts. Rather, the 
electron as a localized field may extend outwards, gradually and continuously. 
Indeed, if some errors are tolerated, the Maxwell-Lorentz equations and the 
Dirac equation are mutually substitutive: As noted earlier, the whole field of 
the electron may be regarded as electromagnetic to an approximation (Lorentz, 
1952). Also, the same whole field may be considered to be governed by the 

3 Earlier, Sachs and Schwebel rewrote the Maxwell-Lorentz equations by introducing a 
set of new field variables which are complex and are related linearly to the field variables 
appearing in the Maxwell-Lorentz equations, and obtained spinor equations. They 
recognize that the linear relations between the two sets of field variables are not co- 
variant under the Lorentz transformation (Sachs and Schwebel, 1962). Sachs suggested 
that those spinor equations are more fundamental than the Maxwell-Lorentz equations 
(Sachs, 1971). See also the fifth item of the summary given in Section 5. 

4 It seems unfeasible to accept the so-called Mach principle which states that the mass of 
an electron is due to the whole mass contained in the entire universe (Klein, 1971). 



RELATION BETWEEN ELECTRON AND ELECTROMAGNETIC FIELDS 381 

Schr6dinger equation or the Dirac equation to an approximation; this situation 
is suggested by the known fact that a stationary state (energy eigenstate) of 
an electron bound in an atom, being determined by the Schr6dinger equation, 
seems to be also a stationary state of the electromagnetic field accompanying 
the bare or mechanical electron, for there is seen no emission or absorption of 
radiation, as long as the bare electron stays in the energy eigenstate. 

According to the above observation, one may tend to conclude that the 
Dirac equation and the Maxwell-Lorentz equations are not only mutually 
complementary but also mutually substitutive to an approximation. If  this 
conclusion is feasible to some extent, it will be possible to compare more 
directly a field governed by the Dirac equation with a field governed by the 
Maxwell-Lorentz equations, The comparison will be made in the next section. 

4. A Comparison between the Dirac Equation 
and the Maxwelt-Lorentz Equations 

The Dirac equation for an electron in a vacuum is given by 

ih Oq~/Ot - ( ~. p + ~mc2)~ = 0 

where 

p = - i h c  b/Or, r = (x, y,  z) 

o), :1), 
° o) 

(4.1) 

(4.2) 

We regard the Dirac equation given in the above as a set of four partial differen- 
tial equations. We write 

~ j  = •j exp ( - imc2t /h) ,  j = 1, 2, 3, 4 (4.3) 

and substitute them in (4.1), obtaining 

O~l/Ot + c(3~4/3x - i ~¢4/0y + O~3/OZ ) = 0 (4.4) 

O~2/Ot + C(O¢3/OX + i O(93/Oy -- O(94/OZ ) = 0 (4.5) 

O(~3/Ot + e(O(~2/Ox - i 3(92/3y + 301/Oz) + (2mc2/ih)(~3 = 0 (4,6) 

~ 4 / 3 t  + c ( ~ l / O X  + i ~ l / O y  - 3~2/8z ) + (2mc2/ ih~4  = 0 (4.7) 

These are reduced further to 

+ . . . . . . . . . . . . .  A~j =0  j = l  2, 3 ,4  (4.8) 
3(et) 2mc I O - ~  
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If  m, the electronic mass, is sufficiently small, equation (3.8) is the same wave 
equation as for electromagnetic fields. If  

[ 02q~/./~)(Ct) 2 [ ~ [A~] t (4.9)  

then the equation is the Schr6dinger equation. These relations imply that the 
Dirac equation possesses characteristics of  the Schr6dinger equation and of  the 
MaxweU-Lorentz equations at the same time (see footnote 5). 

In order to analyze (4.4)-(4.7) further, we put 

~1 = iPx + ry  

¢2 = - /Pz  + ~ (4.10) 

~3 = i(iQx + Qy) 

¢4 = i ( - iQz  + 7) 

and substitute these in (4.4)-(4.7), obtaining 

curl Q - aP/a(ct) - grad r2 = 0 (4.1 1) 

div P + Or~/O(ct) - (2mc/h)Q. I = 0 (4.12) 

curt P + aQ/b(ct) - grad ~ + (2mc/h)(I x Q + 77I) = 0 (4. t3)  

div Q - OUo(ct) = 0 (4.14) 

where 

P=(Px,Py,Pz), Q=(Qx, Qy, Qz) (4.15) 

I = (0, 0, 1) 

Those functions are presented as if they are 3-dimensional (spatial) vectors, 
simply for the sake of  tentative convenience. Their transformation character- 
istics should be reexamined in detail tater. I f  ~ *  is conjugate to q~, it is easily 
shown that 

, ~ . ~  = ¢ , ¢  = p2 + Q2 + ~2 + ~72 (4.16) 

c ~ F * ~  = c~b*~ = 2cP x Q + 2c07P - ~Q) (4.17) 

'~*/3~ = q~*~ = p 2  _ Q2 + ~2 _ 72 (4.18) 

If  P denotes the electric field vector and Q the magnetic field vector, then 
functions (4.16) and (4.17) remind us of the energy-momentum density of  
the electromagnetic field. Function (4.18) is similar to a scalar function of  
the same field, known as a constituent of  Mie's World function (Sommerfeld, 
1964). As early investigators did, we tend to think that the structure of  the 
electron is related to electromagnetic fields. 

5 If we substitute (4.3) in the Klein-Gordon equation, we get (4.8) immediately. Of 
course, solutions of (4.8) are not always solutions of (4.4)-(4.7), although the latter 
always satisfy (4.8). 



RELATION BETWEEN ELECTRON AND ELECTROMAGNETIC FIELDS 383 

Employing Heaviside's units, the Maxwell-Lorentz equations in a vacuum 
are given by 

curl H - ~E/~(ct) - J/c = 0 (4.19) 

div E - p = 0 (4.20) 

curl E + 8H/0(ct) = 0 (4.21) 

div H = 0 (4.22) 

where E is the electric field vector, H the magnetic field vector, p the charge 
density, and J/c the current density. 0 and J are assumed to be functions of  E 
and H so that those equations are closed by themselves (M$11er, 1952, chapter 
V). The set of  equations (4.19)-(4.22) is equivalent to the set of  equations 
(4.11)-(4.14), if we put 

P = E (4.23) 

Q = H (4.24) 

grad r~ - J/c = 0 (4.25) 

- (2mc/~)H.  I + 8r~/8(ct) + p = 0 (4.26) 

(2mc/h)(l x H + r~/) - grad ~ = 0 (4.27) 

a~/a(ct) = 0 (4.28) 

Condition (4.28) implies that the comparison between the Dirac equation and 
the Maxwell-Lorentz equations should be made with respect to their time- 
independent solutions. Then we have from (4.26) 

p = (2mc/h)Hz (4.29) 

This relation leads to the following: 

f f f ,  d, dz= ( 2 m c / h ) f f f H ~  d, dz 

= (2mc/hjMz (4.30) 

where M z is the z-component of  the moment  o f  the magnetic field. By putting 

e=fffpdxdydz (4.31) 

we obtain 

Mz = (h/2mc)e (4.32) 

The last relation is well known as of the Bohr magneton. 
Equations (4.25)-(4.28) are covariant with respect to a rotation of  the 

spatial axes, if we regard P, Q and I as three 3-vectors respectively, and ~ and 
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r/as two scalars. This transformation is achieved by keeping the ~'s unchanged 
and by transforming P and Q as two 3-vectors, and ~ and ~ as scalars in the 
Dirac equation. By this transformation, of course, the resultant equation is 
no longer the Dirac equation. The present scheme of transformation is different 
either from the conventional scheme or from the one considered elsewhere 
(Koga, 1975b, Appendix B). The field under consideration is assumed to 
satisfy the Dirac equation before the transformation. But, after a rotation of 
the coordinate axes, the equation which the field satisfies is no longer the 
Dirac equation. With respect to the Lorentz transformation, the situation is 
worse, for equations (4.25)-(4.28) are not covariant in any conceivable way. 
Nevertheless, it is remarkable that, in an inertial coordinate system, a field 
satisfying the Dirac equation can be interpreted as to be equivalent to an 
electromagnetic field of which the moment of magnetic field is of the Bohr 
magneton. 

The above situation sheds some light on the cause of difficulties which 
earlier investigators such as Abraham, Mie, and others encountered in their 
attempts to mold the structure of the electron with electromagnetic fields 
(Sommerfeld, 1964). Neither an electromagnetic field nor a Dirac field 
satisfying the Dirac equation may fully represent the real field of the electron; 
what is emphasized in one representation seems to be different from what is 
emphasized in the other. 

5. Summary and Remarks 

[I] Equation (4.8) suggests that the Dirac equation is led to Schr6dinger's 
wave equation to an approximation, and also to the wave equations for 
electromagnetic fields to another approximation. 

[2] Functions (4.16)-(4.18) remind us of some of the functions which 
played significant roles in those treatments made by Lorentz and others in the 
attempt to clarify the structure of the electron as of electromagnetic origin. 

[3] Those relations found between the Dirac equation and the Maxwell- 
Lorentz equations are not covariant in any way under rotatory transformations, 
including the Lorentz transformation, of the coordinate axes. The cause of the 
situation is obvious: The field satisfying the Dirac equation is not the same as 
the one satisfying the Maxwell-Lorentz equations; the similarity arises only 
when the two fields are compared in a particular way. 

[4] Relation (4.32) implies that a field governed by the Dirac equation 
has a peculiar regularity or order which can be introduced to a field satisfying 
the Maxwell-Lorentz equations either by a particular boundary condition or by 
a particular source, i.e., the Bohr magneton. 

[5] Due to the presence of relation (4.3), the present relation between the 
Dirac equation and the Maxwell-Lorentz equations is different from the one 
considered by Sachs and Schwebel (see footnote 3). The present one is also 
different from those which may arise in theories developed by means of con- 
ventional spinor representations of electromagnetic fields (Bade and Jehle, 
1953). 
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As is well known, two fields which are governed by the same set o f  differential 
equations are not necessarily o f  the same nature. For instance, basic equations 
of  hydrodynamics are often similar to basic equations of  the theory of  electro- 
magnetic fields. From this point of  view, we are particularly interested in the 
fourth item in the above summary, and tend to speculate that the Dirac equa- 
tion and the Maxwell-Lorentz equations are for the same one field. If  it is 
feasible to speculate that the original equations of  the field are given as co- 
variant under coordinate transformations made in a non-Euclidean sense, and 
that the metric tensor components are functions of  the field variables, the 
original equations are nonlinear. The iinearization leading to the Dirac equa- 
tion may be achieved by replacing certain functions with Planck's constant h 
and the electronic mass m, while the linearization to the Maxwell-Lorentz 
equations may be made by replacing a function with the electronic charge e. 
A preliminary investigation has been made according to this speculation (Koga, 
1975c). 
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